Lecture 5

SEQUENTIAT HYPOTHESIS TESTING

Our seccnd example of statements made about Bayes' theorem in the lit-
erature has been provided by Prcocfessor Wm. Feller. On page 85 of his hook
(Feller, 1950) he writes: "Unfocrtunately Bayes' rule has been somewhat
discredited by metaphysical applicaticns of the type described above.* In
routine practice, this kind of argument can be dangerous. A guality control
engineer is concerned with one particular machine and not with an infinite
population of machines from which one was chosen at random. He has been
advised to use Bayes' rule on the grounds that it is logically acceptable
and corresponds to our way of thinking. Plato used this type of argument
to prove the existence of Atlantis, and philosophers used it to prove the
absurdity of Newton's mechanics. TIn our case 1t overlooks the circumstance
that the engineer desires success and that he will do better by estimating
and minimizing the sources of wvarious types ¢f errors in predicting and
guessing. The modern method of statistical tests and estimation is less
intuitive but more realistic. It may be not only defended but also applied.”

Well, that gives us a pretty clear idea of one common attitude toward
Bayes' theorem, at least for problems of gquality contrcol. Now what are the
procedures referred to as the "modern method of statistical testg?” 1 can't

tell of course from reading, but ever since the early days of World War IT

*The reference is to Laplace's law of succession, about which we will have
a lot to say later on in Lecture 16.
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Lecture 5, Section 5.1.

when he invented it, Wald's sequential testing procedure (Wald, 1947) has
been generally considered the optimum one available, optimum according to
several different criteria.

Let's illustrate the problem by considering manufacture of some small
item. Suppose we take crystal dicdes. ©One of the important things about
a crystal diocde is the maximum inverse peak voltage it can stand without
damage. Clearly, the way to find ocut just how good cur diodes are is to
test each one and measure the voltage at which damage occurs. The trouble
is that once we'wve done this the diode is ruined, so we can't test every
one this way. We can test only some fraction of the batch and we would
not want to test a wvery large fraction. So the problem of quality control
in this case is to find some method of plausible reasoning which lets us do
the best possible job of deciding whether we have a good batch or not, with
the smallest number of diodes ruined in testing. I think all statisticians
agree that Wald's method is the optimum one in this sense of requiring, on
the average, fewer tests than any other for a given probability of error.
Wald, in a footnote in his book, says that he conjectures that it's an
optimum test in this sense but didn't succeed in proving it. We'll come
back te that statement a little later.

Just for variety, let's go first into the way the robot would handle
this proklem. We will simply ignore Feller's warning, and see for ourselves
whether Bayes' thecrem c¢an be "applied." After the final comparisons are

at hand, we will also see whether 1t can be "defended."

5.1 Logarithmic Form of Bayes' Theorem.

First, let's manipulate Bayes' theorem a little bit in a manner sug-
gested by I. J. Good (Geod, 1950). Instead of calculating the prchability,

it would be just as good if we'd calculate any monotonic function of the
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probability, if we know what function we've got. So, let's do a little
rebuilding on Bayes' theorem. I'll use E to stand for new evidence,

(E|2%)

(A|EX) = (A'X) B %)

{5-1)

Now we could have written Bayes' theorem for the probability that A ig false

(a|Ex) = (a|x) (E(Eai; ’ (5-2)

and we can take the ratic of the two equations:

given the same evidence,

(a|EX)  @A[x)(E|A) .
(a]EX) = (&[x) (E|ax) (5-3)

In this case, one of our terms will drop out. This doesn't look like any
particular advantage. But the guantity that we have here, the ratio of the
probability that A is true to the probability that it's false, has a technical
name. We call it the "odds" on the proposition A. So 1if T write the "odds
of A, given E and X," as the symbol

o(alEx) = (AEX) (5-4)

(a|EX)

then I can write Bayes' theorem in the following form:

0(A|EX) = O(aX) (E]Ax) (5-5)
(E|aX)

The odds on A are equal to the prior odds multiplied by the ratic of the
probability that E would be seen if A was *true, to the probability that E
would be observed if A was false. The odds are, of course, a monctonic
function of the probability, so we could equally well calculate these
quantities.

In some applications it is even more convenient to take the logarithm
of the odds because of the fact that we can then add up terms--the same
reascn the logarithm was invented in the first place. Now we could take
logarithms to any base we want. What I'm after here is something which is

handy for numerical work, and the base 10 turns out to be easier to use
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than the base e for that purpose, even though it makes our equations look
less elegant. And so I'm going to define a new function which I'11 call
the evidence for A given E:

e(n|EX) = 10 log, 0(alEX) . {5-6)
This is still a monotonic function of the probability. By using the base
10 and putting the factor 10 in front, we've now reached the condition where
we're measuring evidence in decibels! Now what does Bayes' theorem look
like? The evidence for A, given E, is egual to the pricr evidence plus the

number of db provided by working out the probability ratio in the second

e(a|E) = e(al|x) + 20 10910[22 i;}- (5=7)

Now let's suppose that this new information that we got actually con-

term below:

sisted of several different propositions:

E=ElE2E3...

In that case, we could expand this a little more by successive applications

of Rule 1:
[ | (E.|a) (E2|ElA
e{A[E) = e(A|X) + 10 log + 10 log | 7 = + ol (5-8)
10 (El a) ( 5 la J

In a lot of cases, it turns out that the probability of E, is not influenced

by knowledge of E For example, in the case where cne says technically

1°
the prokability is a chance; say the tossing of a coin, where knowing the
result of one toss (if vou know the coin is honest) doesn't influence the
probability you would assign for the next toss. In case these geveral pleces
of evidence are independent, the above egquation becomes:

(€, |2
_ i

e(alE) = e|x) + 10 ], log AR (5-9)
i

where the sum is over all the extra pieces of information we get.
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Now it would be a good idea for us to get some feeling for numerical
values here. So, I'd like to give a table and a graph. We have here three
different ways we can measure plausibility; evidence, odds, or probability;
they're zll monotonic functions of each other. Zerc db of evidence corres-
ponds to odds of 1 or to a probability of 1/2. Now every electrical engi-
neer knows that 3 db means a factor of 2 and 10 db is a factor of 10, and
go if we just go up in steps of 3 db, or 10, why we can write down this

table pretty fast.

e 0 o]

0 1:1 1/2

3 2:1 2/3

6 4:1 4/5

10 10:1 10/11
20 100:1 100/101
30 1000: 1 0.999
40 10%:1 0.9999
- 1/0 i-p

You see here why giving evidence in db is nice. When probabilities get very
close to one or very close to zero, our intuition doesn't work very well.
Does the difference between the probability of 0.999 and 0.999% mean a great
deal to you? It certainly doesn't to me. But after living with this for

a while, the difference between evidence of plus 30 db and plus 40 db does
mean something to me. It's now in a scale which my mind can comprehend.
This is just another example of the Weber-Fechner law. Now let's draw a
graph showing reasonably well the numerical values of evidence versus proba-

bility. This graph is shown in Figure (5.1). The graph is symmetric about
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-30 -25 -20 -15 -10 -5 0 +5 +10 +15 +20 +25 +30
+
Probability Evidence {db) -

Figure 5.1. Probability vs. Evidence.
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the center.

Now let's take our specific example of quality control. I'll assume
nurbers which are not at all realistic in order to bring out some peints
a little hit better., We have eleven automatic machines which are turning
out crystal diodes. This example corresponds to a very early stage in the
development of crystal dicdes, because ten of the machines produce, on the
average, one in six defective. The eleventh machine is even worse; it makes
one in three defective. The output of each machine is collected in an
unlabeled box and stored in the warehouse. We choose one of the boxes and
we test a few of the diodes. Our job is to decide whether we got a box
from the bad machine or not; that is, whether we're going to accept this
batch or reject it. Now we're going to turn this job over to our rcbot and
see how he handles 1it.

He says: "If we want to make judgments about whether we have the
box of defective dicdes, the way to do this is to calculate the probability
that we have the box of defective diodes, conditional on all the evidence
available." Let's say the proposition A shall stand for the statement
"we chose the bad box." All right, what is the initial evidence for propo-

“sition A? The only initial evidence is that there are eleven machines and

we don't know which cne we got; so by Rule 4 (A]X) = 1/11, and by Rule 2
(a|x) =1 - (A]%) = 10/11. Therefore,
— (A X) 1/11
e{A|X) = 10 lo =10 1
| ) glO(a X) OglO 10/11
= - 10 db {(5-10)

Evidently, the only property of X that's going to be relevant to this problem
is just this number, - 10 db. Any cther kind of prior evidence which led
to the same initial probability assignment would give us exactly the same

mathematical problem from this point on. So, it isn't really necessary
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to say we're talking only about a problem where there are eleven machines,
and so on. There might be only one machine, and the prior evidence consists
of our previous experience with it. My reason for stating the problem in
terms of eleven machines was just that we have, so far, only one principle,
Rule 4, by which we can convert raw information into numerical values of
probability. I mention this here only because of Professor Feller's remark
about a single machine. To our robot, it doesn't make any difference how
many machines there are; the only thing that counts is the prior probability,
however arrived at.

Now freom this box we take out a diode and test it to see where it
breaks down. Every time we pull ocut a bad one, what will that do to the
evidence? That will add to this the number

10 log lEEElFiL (5-11)
10 (bad|a)
where (bad|A) represents the probability of getting a bad diode, giwven A,
etc. We have, then, to determine these prcbabilities.

If we have the box in which one in three are bad, what is the proba-
bility that we will draw @ bad one? The final answer is obviocus to all
of us without any calculation, and the argument showing this from the prin-
ciples of probability theory is almost trivial. WNevertheless, I want to
give that argument in full because there is a very important general prin-
ciple lurking here, which will apply in countless other applications of

probability theory.

5.2. Sampling With and Without Replacement.

Consider first the traditional "urn" of probability theory, in which
we have placed N balls, all of the same size, weight, surface texture, etc.,
labeled 1, 2, ..., N. Balls 1, 2, ..., n are black, and the remaining

(N-n) are white. What is the probability of drawing blindfolded any parti-
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cular ball, say the i'th? Rule 4 answers this, for there are N mutually
exclusive possibilities, and the information given provides no justification
for expecting any one of them in preference to any other. In this state
of knowledge, therefore, the probability sought must be p; = 1/M.

Let us recall clearly just what this means. The prcbability assignment
p. = 1/N is not an assertion of any physical property of the balls; it is

1

merely a means of describing the state of knowledge of the robot prior to

the drawing. It is, therefore, utterly meaningless to speak of "verifying"
this probakility assignment by performing any experiment on the balls; that
would be exactly like trying to verify a boy's love for his dog by performing
experiments on the dog. What it does mean was explained in our derivation
of Rule 4; the assignment p;, = 1/N is uniquely determined by the reqguirement
that the robot's reasoning be consistent in the senge that, in two problems
where he has the same state of knowledge, he must assign the same proba-
bilities. If he were to assign anything different from the uniform distri-
bution, then merely by a permutation cof labels we could exhibit a second
problem in which the robot's state of knowledge is exactly the same; but
in which he is assigning a different probability distribution. I have
repeated this argument for emphasis, because to the best of my knowledge,
this point is not recognized in any other work on probability theory.

Now, what is the prcobability that we shall draw a black ball? Since
different balls are mutually exclusive possibilities, Rule 3 as extended

to Eq. (3-21) applies, and the probability of drawing a black one is the sum

n

black|X) = , = N 5-12
(black|x) Zi=l Py n/ { )
i.e., it is just the fraction of black balls in the uxrn. It is, therefore,

also egqual to the relative frequency with which we would draw black balls,

if we took them all out; or as it is usually stated, if we "sampled the

entire population.”
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We have here one of the many different connections between probability
and frequency. In spite of the triviality of its derivation, I ask you to
note carefully just how it came about; because today most writers on proba-~
bility and statistics deny that prokability theory has anything to do with
plausible reasoning, and insist that the only proper meaning of probability
is that of relative frequency in some "random experiment." According to
this school of thought, if a probability is not a fregquency, then it is not

"skjective," and its use is just not scientifically respectable.
On the other hand, I maintain that, as its derivation shows, the relation
(5-12)} has absolutely nothing to do with the definition of probability:
on the contrary, it is an almost triwvial mathematical conseguence of proba-
bility theory interpreted as the "calculus of inductive reasocning." In
fact, by this broader interpretation of the theory, we lose ncone of the
usual connections between probability and frequency; as will become clear
gradually in the remaining lectures, every connection between probability
and frequency that is actually used in applications, is deducible in a
similar way as a consequence of our "inductive reasoning" form of the theory.
At this point, you might ask, "Aren't you making a tempest in a teapot?
Since on either viewpcoint we end up writing down the same equation (5-12},
which was cbvicus intuitively without any derivation at all, what difference
do these philosophical questions make? It seems like pedantic nit-picking.”
Well, it is true that in many problems the connection between probability
and frequency is so close that the notions are easily confused, and this
confusion does no harm in the pragmatic sense that we end up writing down
the same eguations. Usually, the importance of my nit-picking does not
lie at all in the actual equations used; it lies in our judgment about the

range of validity of those equations.
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The point is that many of the most important problems of current science
and engineering are just problems of inductive reasoning, in which no "random
experiment” is involved in any way. If vou insist that a probability is
not respectable unless it is also a frequency, then you will have to conclude
that probability theory is just not applicable to these problems. But I
am going to insist in these lectures that the relations of probability
theory are perfectly valid when used in the Laplace sense of the "calculus

of inductive reasconing," whether or not there is any connection between

probability and frequency. By using the theory in Just this sort of problem,

where the "frequentist" would deny the validity of probability theory, I
hope to show that we can not only obtain important, useful, and nontrivial
results; we can also clear up scme of the paradoxes surrounding present
communication theory, statistical mechanics, and quantum mechanics.

In fact, the problem of guality control, which led us into this little
excursion, provides one of the most striking examples of the value of this
nit-picking. However, I want to postpone discussion of the history of this
preblem until we have the full comparisons at hand; then we will be able
to see how much statistical practice has suffered from the other kind of
nit-picking, which restricts the apparent range of wvalidity of the theory.

Before returning to the gquality-control problem, let's extend the
result (5-12) to get the general relations in sampling from a finite popu-
lation. For this, we need a little more notation; let By stand for the
proposition, "black ball at the k'th draw,” whereupon bk = Wk will stand
for, "white ball at the k'th draw." 2and, let's indicate the prior informa-
tion more explicitly. What I called X in (5-12) contained the statement
that we have a total of N balls, of which n are black, and (W-n) white;
to remind us of this, I will now write Eg. (5-12} in the form

(B1|N,n) = n/N. (5-13)
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Now, what is the probability of drawing two black balls in two draws?
This is, by Rule 1,
(B1B,|N,n) =.(BlfN,n}(B2|Bl,N,n) (5-14)
First, we suppose that a ball drawn is not replaced before drawing the next
one. S0, in evaluating the last factor, the fact that one black one has
already been drawn means that at the second draw we are sampling from a
population of (N-1) balls, of which (n-1) are klack: and so

nin-1) n! (N-2}!
N{N=1) ~ (n-2)! N!

(BlB2[N,n) = (5-15)

Continuing in this way, we see that the probability of drawing r black balls
in succession without replacement, is

n! (N-r}!
(Bl'°'Br|N'n) = )i N1 s rsn (5-16)

The restriction r £ n isn't necessary if we understand that we define factor-
ials by the gamma function relation: n! = I'(n+l}; for then the factorial
of a negative integer is infinite, and (5-16) automatically gives zero when
r > n.

Likewise, the probability of drawing s white balls in succession with-
out replacement is given by a relation of the same form, except that the
roles of n and (N-n) are interchanged:

_ (W-n)! (N-s)!
(Wy...Wg[¥m) = (uTnTeyT w (5-17)

Next, we ask for the probability that in m draws without replacement
we shall obtain r black balls and (m-r) white ones, in a specified order.
Suppose first that black balls are drawn on the first r trials, and white
ones on the remaining {(m-x) trials. Then Rule 1 gives

(Bpo..Byfypqe--Wp|N,n) = (By...B[N,n) (,pq... W |By...B,N,n)  (5-18)
of which the first factor is given by (5-16), and the second by (5-17),

if we note that after r black balls have been drawn, we are then sampling
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from a population of (N-r) balls ({(instead of N), of which (n-r) are black
(instead of n). Also, the gquantity denoted by s in (5-17) is equal to
(m~r). So, we have

n! (N-r}! (N-n) ! (N-m)!
(n-r)! N! (N-n-m+r}! (N-r)!

(B,---B W W |N,n) = (5-19)

r+1°°"
Although this result was derived for a particular order of drawing black
and white balls, the prcobability actually depends only on the numbers r,
(m-r) drawn; and not on the particular order in which black and white appeared.

To see this, write out the expression (5-19) more fully, in the manner

n!
To-r) 1 = n(n=-1}) (n-2) *- - (n-r+1) (5-20)
and similarly for the two other ratios of factorials in (5-1%9). It then

becomes

n{n-1)--- (n-r+1) {N-n) (N—n-1) * * » (N-n-mér+1)
N{N-1} ** * (N-m+1)

(5-21)

Now suppose that r black balls and {m-r) white ones are drawn, in any other
order. The probability of this is the product of m factors; every time

a black one is drawn there appears a factor: (nuber of black balls in
urn) / (total number of balls); and similarly for drawing a white one. The
total number of balls in the urn decreases by one at each drawing; therefore,
for the k'th drawing a factor (N-k+l) appears in the denominator, whatever
the colors of the first k draws. Just before the k'th black ball is drawn,
whether this occurs on the k'th trial or any later one, there are {n-k+l)
black balls in the urn; so drawing the k'th black one places a factor (n-kt+l}
in the numerator. Just before the k'th white ball is drawn, there are
(N-n-k+1) white balls in the urn; and so drawing the k'th white one places

a factor (¥N-n-k+l) in the numerator regardless of whether this occcurs on
the k'th trial or any later one. Therefore, by the time all m balls have

been drawn, one has accumulated exactly the same factors in numerator and
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and denominator as in (5-21}; different orders of black and white correspond
only to different permutations of the order of factors in the numerator.

The probability of drawing r black kalls in any specified order in m trials,
without replacement, is therefore given by (5-12).

Finally, we ask: what is the probability of drawing exactly r black
balls in m trials without replacement, regardless of their order? Different
orders of drawing are mutually exclusive events, so we must sum over all
possible orders. But since all orders have the same prokability (5-19},

this means that we must multiply (5-19) by the binomial coefficient

m) _ m!
(r Tl (m-r)! (5-22)

which represents the number of different possible orders of drawing r black
balls in m trials. [Question for you to ponder: why isn't this factor
just m!? After all, we started this discussion by saying that all the
balls, in addition to being either black or white, also carried individual
labels i =1, 2, ..., N, so permatations of black balls among themselves
are distinguishable events. A little private thought will enable you to
answer thisg, unless you have had the misfortune of studying Bose and Fermi
statistics in quantum theory from the usual textbook discussions; in that
case you may have some unlearning to deo first. Hint: In (5-19) we are
not specifying which black balls and which white ones are to be drawn; if
we did, (5-19) would collapse to (N-m)!/N!].

Taking the product of (5-22) and (5-19), the many factorials appearing
can be reorganized into three binomial coefficients, and the probability

of r black balls in m trials without replacement becomes

Q)__@;j_ (5~23)

(o)

(r|m,N,n) =
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This is our main result, and it is called the hypergeometric distribution,

because the right-hand side of (5-23) is closely related to the coefficients
in the power series representation of the hypergeometric function. As an
aid to memory, we can put this into a more symmetrical form by adopting

a new notation; the probability of drawing b black and w white balls, with-

out replacement, from a population of B black and W white ones, is

= j;l—ﬁgl (5-24)
o)

and in this form we can generalize still further. We have been considering

(ow | 3W)

an urn with only two kinds of balls: black and white. Suppose there are
alsc red, green, brown, etc. ballspresent; in all,m different colors. I

leave it for you to verify that the probability of drawing n, balls of

1
type 1, n, of type 2, etc., without replacement, from a pepulation of Ny

of type 1, N, of type 2, etc., is

2

(Nl)...(Nm>
(n ...n [N ...N ) = o1 O (5-25)

) m .
IN,
i
in,
i
The hypergeometric distribution (5-23) is rather complicated in its
most general form, but it goes into & simpler distribution in the limit
where the numbers n, (N-n) kecome very large compared to the number m sampled.
Intuitively, this is clear; since then the proportions of bhlack and white
balls in the urn change only negligibly due to the small number drawn, so

the probability of getting a black ball is esgsentially the same at each

drawing. Tc¢ see this mathematically, note that {(5-21) can be written as

T (1—%}(1-%) .. (1-r;l)(1—N}n)(1_NEn>. .. (1_%%)
- LD )

Now let N9, (N-n}=+® in such a way that the ratio p = n/N remains constant.
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A1l the factors in curly brackets in (5-26} tend to unity, and so (5-26)
reduces in the limit to

n¥ (-n) "7 r m-r
——gm __ =p (1-p) (5-27)

This is the prcbability of drawing r black, (m-r) white balls in a specified
order, and you see that it corresponds to a constant probability p of getting
a black ball, (1l-p) of getting a white one, at each trial. The probability
of getting r black in m draws regardless of the order, again regquires the
combinatorial factor (5-22); and so in the limit the hypergeometric distri-
bution goes into
. m -
(r|m,p) = lim (r!m,N,n) = ( ) Pt (1-py™t (5-28)

Moo -

N=11>®

n/N+p

This is the binomial distribution, so called because the function

m 00
£ = r , = m T (1opD-T
(s) zr=0 s (r|m ) Zrzo(r)(sp) (1-p)
= (sp+1-p" (5-29)

is just a representation of Newton's bincmial theorem. F(sg) is called the

generating function of the binomial distribution; we will see later that

generating functions provide a powerful tool for carrying out certain advanced
calculations, as was first shown in Laplace's "Theorie Analytique." Note
that the evident relation £(1) = 1 is just a verification that the proba-
bilities in (5-28) are correctly normalized; i.e.
g lmmpy =1 (5-30)
We can carry out a similar limiting process on the generalized hyper-
geometric distribution (5-25). Again, I leave it for you to verify that

in the limit where all the Ni+m in sguch a way that the fractions

tend to ceonstants, (5-25) goes into the multinomial distribution
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(nl...nm pl...pm) = 1im (nl...nm_Nl...Nm)
N s~pe0
i
n! S ) O
= P P B & (5=-32)
nl!n2!---nm! 1 2 m

where n = Zni. And, as in (5-29), you can define a generating function of
(m-1) variables, from which you can prove that (5-32) is correctly normalized.
Up to now, we have considered only the case where we sample without
replacement; and that is obviously appropriate te our guality-control problem,
where each diode drawn is tested to destruction. But suppose now that we
sample balls, and after noting the color of each, we replace it in the urn
before drawing the next ball. This case, of sampling with replacement, is
enormously more complicated conceptually, but with some assumptions usually
made, ends up being simpler mathematically, than sampling without replacement.
For, let's go back to the probability of drawing two black balls in succes-
gion:
(8B, [N,n) = (Bl]N,n)(lesl,N,n) (5-33)
Evidently, we still have (n/N) for the first factor; but what is the second
one? Answering this would be, in general, an enormously difficult problem,
reguiring a vast amount of additional data before it could be solved. Because,
what happens tec that black ball that we put back in the urn? If we merely
dropped it into the urn, and immediately drew ancther ball, then it was left
lying on the top of the other balls, (or in the top layer of halls); and
so it is more likely to be drawn again than any other specified ball, whose
location in the urn is unknown. But this upsets the whole basis of our
calculation, because the probability of drawing any particular (i'th) ball
is no longer given by Rule 4, which led to (5-12).
Evidently, the probability of drawing any particular ball now depends

on such details as the exact size and shape of the urn, the size of the balls,
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the exact way in which the first one was tossed back in, the elastic pro-
perties of kalls and urn, the coefficients of friction between balls and
between ball and urn, the exact way you reach in to draw the second ball,
etc, Bven if all these data were at hand, I don't think that a team of the
1,000 best mathematicians in the world, backed up by all the computing faci-
lities in the world, would be able to solve the problem; or would even know
how to get started on it. Still, I don't think it would be guite right to

say that the prcoblem is unsclvable in principle; only so complicated that

it just isn't worth anybedy's time even to think abkout it.

So, what do we do? Well, there's a very clever trick for handling
problems that become too difficult. As far as I know, 1t originated in
probability theory; but it produces such euphoria that it has already spread
to physics, and there is some danger that it may spread also to other fields.

In probability theory, when a problem becomes too hard to solve, we
solve it anyway by:

(1) making it still harder;

(2) redefining what we mean by "solving” it, so that it becomes

something we can do;

{3) inventing a dignified and technical-sounding word to describe

this procedure, which has the psychological effect of concealing
the real nature of what we have done, and making it appear
respectable.

In the case of sampling with replacement, we apply this strategy by
(1) supposing that after tossing the kall in, we shake up the urn. However
complicated the preblem was initially, it now becomes many orders of magnitude
more complicated, because the solution now depends on every detail of the
precise way we shake it, in addition to all the factors mentioned above;

{2} assert that the shaking has somehow made all these details irrelevant,
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so that the problem reverts back to the simple one where Rule 4 applies;

(3) inventing the dignified-scunding word randocmization to describe what

we have done. This term is, evidently, a suphemism whose real meaning is:
deliberately throwing away relevant information when it becomes too compli-
cated for us to handle.

I have described this procedure in laccnic terms, because an antidote
is needed for the impression created by some writers on probability theory,
who attach a kind of mystical significance to it. For socme, declaring a
prcblem to be "randomized" is an incantation with the same purpose and effect
as those uttered by a Priest to convert ordinary water into Holy Water; i.e.,
it sanctifies their subseguent calculations and renders them immune to criti-
cism. We agnostics often envy the sense of security that the True Believer
thus acquires so easily; but which is forever denied to us.

However, in defense of this procedure, we have to admit that it often
leads to a useful approximation to the correct soclution; i.e., that the
complicated details, while undeniably relevant, might nevertheless have little
numerical effect on the answers to certain particularly simpie questions,
such as the probability of drawing r black balls in m trials when m is suf-
ficiently small.

From the standpoint of principle, however, an element of wvagueness
necessarily enters at this point; for while we may feel intuitively that
this leads to a good approximation, nobody has ever produced a proof of this,
much less a reliable estimate of the accuracy of the approximation, which
presumably improves with more shaking. The vagueness is particularly evident
in the fact that different people have widely divergent views about exactly
how much shaking is reguired to Jjustify step (2). [Witness the minor furor
surrounding a recent Govermment-sponsored and naticnally televised game of

chance, when somecone objected that the procedure for drawing numbers from a
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fish bowl to determine the order of call-up of young men for Military Service
was "unfair" because the bowl hadn't been shaken enough to make the drawing

"truly random,"

whatever that means. Yet if anyone had asked the cbjector:

"To whom is it unfair?" he could not have given any answer except, "To those
whose numbers are on top; I don't know who they are." But after any amount

of further shaking, this will still be true!]

Again, you may accuse me of nit-picking, because you know that after
all these polemics, I am just going to go ahead and use the randomized solu-
tion like everybody else does. Note, however, that my objection is not to
the procedure itself, provided that we franhkly acknowledge what we are doing;
i.e., instead of sclving the real problem, we are making a practical compro-
mise and being, of necessity, content with an approximate sclution of unknown
accuracy. That is something we have to do in all areas of applied mathematics,
and there is no reason to expect probability theory to be any different in
this respect.

My objection is to this mystical belief that by "randomization" we
have somehow washed away all our sins, and from that point on we proceed
with exact relations--so exact that we can then subject our solution to all
kinds of extreme conditions and believe the results. The most serious and
mogt common error resulting from this belief is in the derivaticon of limit
theorems (i.e., when sampling with replacement, nothing prevents us from
passing to the limit m+ and obtaining the usual "laws of large numbers").

If we don't recognize the approximate nature of our starting equations, we
delude ourselves intoc believing that we have "proved" things (such as the
rigorous identity of probability and limiting freguency) that are just not

true in real random experiments.

Returning to the equations, what answer can we now give to the guestion
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posed after Eg. (5-33)? The probability (B2[B1,N,n) of drawing a black ball
on the second draw, clearly depends not only on N and n, but also on the

fact that a black one has aiready been drawn and replaced. But this latter
dependence is just so complicated that we can't, in real life, take it into
account; so we shake the urn to “"randomize" the problem, and then declare

Bl to be irrelevant: (B2|B1,N,n) = (BZ|N,n) = n/N. After drawing and replac-
ing the second ball, we again shake the urn, declare it "randomized", and
get (B3|B2,B1,N,n) = (B3IN,n) = n/N, ete. Tn this approximation, the proba-
bility of drawing a black one at any trial, is (n/N), and (N-n}/N is the
probability, at every trial, of drawing a white ball. This leads us to
write the probability of drawing exactly r klack balls in m trials regardless

of crder, as

T \J0-%
(r|m,N,n) = (i) (%) P%;E) (5-34)

which is just the binomial distribution (5-28) with p = n/N.

Evidently, for small m, this approximation will be guite good; but for
large m these small errors can accumulate (depending on exactly how we shake
the urn, etc.) to the point where (5-34) is utterly useless. However, I
think that some workers in probability theory would deny this; so let's
demonstrate it explicitly by a simple, but realistic, extension of the problem.

Suppose that drawing and replacing a black ball actually increases the
prokability of a black one at the next draw by scme small amount €>0, while
drawing and replacing a white one decreases the probability of a black one
at the next draw by a (possibly egual) small guantity &>0; and that the
influence of earliexr draws than the last one is negligible compared to £ ox
§. Then

(B [B,_,/Nom) =p+e (B W, _, W) =p -8

(5-35)

(W, [B_ /M) =1-p-e¢, (W, [W, _ M) =1 -p=+ 8
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where p = n/N. The probability of drawing r black, {(m-r) white balls in
any specified order, is eagily seen to be:

pip+e) P (p-6)° (1-prs) ¥ (1op-e) ™ (5-36)
if the first draw is black, while if the first is white, the first factor in
(5-3¢) should ke (l-p). Here b is the number of black draws preceded by
black ones, k' the number of black preceded by white, w the number of white

draws preceded by white, and w' the number of white preceded by black.

b+ b' = {r'l} , w o+ w'~={ o } (5-37)
r m-r-1

the upper case and lower cases holding when the first draw is black or white,

Evidently,

respectively.
Now it is clear that, when r and (m-r) are small, the presence of ¢
and 6 in (5-36) makes little difference, and it reduces for all practical

purpcses to

-r

P (1-p) ™ (5-38)
as in the binomial distribution {5-34). But as these numbers increase, we
can use relations of the form

b ¢

i [ £b

1+ = = axpl— 5-39

( p) Pkp> ( )
and (5-36) goesg into

— - ) - ]

pr (1 - p)m r exp{eb Sk + 8w ew } (5-40)
p 1-p

The probability of drawing r black, {m-r) white balls now depends on the
order in which black and white appear, and for a given £, when the numbers

b, b', w, w' become sufficiently large, the probability can bescome arbitrarily

large (or small) compared to (5-38).

We see this effect most clearly if we suppose that N = 2n, p = 1/2, in

which case we will surely have € = §. The exponential factor in (5-40) then
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reduces to:
exp {2[(b-b"} + (w-w')1} (5-41)

This shows that, (1) as the number m of draws tends to infinity, the proba-
bility of results containing "long runs"; i.e. long strings of black {or white)
balls in succession, beccmes arbitrarily large compared to the value given
by the "randomized" approximation; (2) this effect becomes appreciable when
the numbers (eb), etc., become of order unity. Thus, if g = 10—3, the
"randomized" approximation can be trusted up te about mvl000; beyond that,
yvou are deluding yourself by using it. In the limit ms<, it cannot be
trusted for any £>0.

All right, we've had a first glimpse at some of the principles and
pitfalls of standard sampling theory, so let's turn back to the guality-

control problem in which the question came up.

5.3. The Robot's Procedure

You recall, we were trying to use Bayes' theorem in the form of the
evidence function:

(E | A)

e(alE) = e(alx) + 10 109, 1oy

(5-42)

toc test hypothesis A = "we have a batch in which 1/3 are bad" against a single
alternative B = "we have a batch in which 1/6 are bad:" The prior evidence

for A was, by (5-10), e(A]X) = -10 db, and we had reached the "problem"

of evaluating the other terms {ElA), (E]a) in (5-9) for the case that the
experimental result was E = "we draw a bad cne on the first draw." What

is the probability of this happening if A is true? Well, if 1/3 of them

are bad, then we are sampling from a population of unknown total N, in

which n = N/3 are bad, {N-n) = 2N/3 good. By (5-12), the probability of
drawing a bad one con the first draw, given &, is of course (bad|A) =n/N = 1/3,

as was obviocus to all from the start. To evaluate (E{a) = {bad|a), ncte
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that in this problem it is part of the prior information X that either
proposition A or B must be true; no other hypothesis about the batch is to
be considered (we will see in Lecture & what happeng if we change this
condition). So, in this problem, a = B; if A is false, then B must be true;
i.e. there are 1/6 bad, and (Efa) = 1./6. Thus, if we draw a bad one on the
first draw, this will increase the evidence for A by

(E|a) _ (1/3) _ .
(B ) 10 loglo - = 10 loglO 2 = 3 db (5-43)

10 logp, (1/6)

What happens now if we draw a second bad one? We are sampling without

replacement, so in the notation of (5-14), this contributes further evidence

10 1o (32 B12) (5-44)
910 ENERY

But (B2FB1A) = (n=-1) /(N-1) now depends on the number N in a batch. To

of

avolid this complicaticn, let's suppose that N, while unknown, is at least
known to be very much larger than any number that we contemplate testing:
i.e. we are going to test such a negligible fraction that the proportion

of bad and good ones in the batch is not changed appreciably by the drawing.
Then the limiting form of the hypergecmetric distribution (5-23) will apply,
namely the bkinomial distribution (5-28). Or, you can say egually well that
in this case sampling without replacement is practically the same thing

as sampling with replacement, leading again to the binomial distribution
(5=-34). In any event, the result is that the probability of drawing a bad
one is the same at every draw, regardiess of what has been drawn previously;
50 Eg. (5-43) now applies for every draw in which we get a bad one. Every
bad one we draw will provide +3 db of evidence in favor of hypothesis A,

the proposition that we had a bad batch. Now suppose we find a good diocde.

We'll get evidence for A of
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{good|R) 2/3
10 log, (good|a) = 10 log; 56 = -0.97 db, {5~45)

but let's call it -1 dbk. Again, this will hold for any draw, if the number
in the batch is sufficiently large. If we have inspected n diodes, of

which we found ny bad ones and n_ good ones, the evidence that we have the

g
bad batch will be
e(A[E) = - 10 + 3nb - ng . {5-46)
You see how sasy this is to do once we've set up the machinery. For example,
if the first twelve we test show up five bad ones, then we'd end up with
e{A|E) = - 10+ 15-7=-24db (5-47)
cr, from Figure (5-1), the probability of a bad hatch is brought up to
(AlE) = 0.4 . (5-48)
In order to get at least 20 db worth of evidence for proposition A, how

many bad ones would we have to find in a certain sequence of tests? Well,

that's not a hard question to answer. If the number of bad ones satisfies

iy =i

p 25+ (5-49)
then we have at least 20 db of evidence for the bad batch above where we
started. Which shows that if we make enough tests, if just slightly more
than a quarter of the cnes tested turn out to be bad, that will giwve us

20 db of evidence that we have the batch in which 1 in 3 are bad.

Now all we have here is the probability or plausibility or evidence,
whatever you wish to call it, of the proposition that we got the bad batch.
Eventually, we have to make a decision. We're going to accept it or we're
going to reject it. How are we going to do that? Well, evidently we have
to decide beforehand: if the probakility of proposition A reaches a certain

level than we'll decide that A is true. If it gets down toc a certain value,

then we'll decide that A is false. There's nothing in probability theory
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which can tell us where to put these threshold levels at which we make our deci-
sion. This has to be kasad on our judgment as to what are the consequences of
making wrong decisions, and what are the costs of making further tests. For ex-
ample, making one kind of error (accepting a bad batch) might be very much more
serious than making the other kind of error (rejecting a gocd batch). That
would have an obvious effect on where we place our threshcld. So we have to
give the rcbot some instructions such as "if the evidence for A gets greater
than +0 db, then we'll reject this batch., If it goes down as low as - 15, then
we'll accept it."

Tet's say that we'd set some threshold limits: we arbitrarily decided that
we will reject the batch if the evidence reaches the upper level, and we will
accept 1t if the plausibility goes down to the lower one. We start doing the
tests, and every time we find a bad ocne the evidence for the bad batch goes up
3 db; every time we find a good one, it goes down 1 db, The tests terminate as
soon as we get into either the accept or reject region for the first time. This
would be the way our robot would do it if we told him to reject or accept on the

basis that the posterior prchability of proposition A reaches a certain level.

We could describe this in terms of a "control chart," where we start at

-10 db at zero number of tests, and plot the result of each test (Fig. 5.2).

5.4. Wald's Probability-Ratio Test.

Now, how does Wald do this? He (Wald, 1947) does not mention Bayes'
theorem. But what he actually does is just the game with the one characteristic
difference which we find in all these comparisons. Like Fisher in the case
of maximum likelihood, he always starts out by throwing away his prior informa-
tion. His graphs always start out at 0 db.

Wald's probability ratio test invelves the calculation of just the last

term of Eguation (5-9), except that he uses natural logarithms. The
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Figure 5.2. A control chart for sequential testing.

. - 2

e{A|E) db ~

name "sequential" describes the fact that the number of tests is not deter-
mined in advance, but depends on what is observed. Thus, at each step of

the seguence of tests we choose one of three alternatives: (1) accept;

(2) reject; (3) make another test. This is the procedure which he con-
jectured represents an optimum procedure in the sense of requiring on the
average fewer tests than any other, but he didn't succeed in proving it.
Several years later, such a proof was offered, by Wald and Welfowitz. We

can well imagine how much mathematical effort has been expended on this
problem. But how does it look to ocur robot? Well, to the robot this problem
doesn't exist at all; it is only a "Scheinprcblem.” To him the fact that

we have derived it from Bayes' theorem is already the proof that the proba-
bility ratio test is the optimum calculation to do, by any sensible criterion
of "optimum." Any criterion which required us to reason in & manner not

reducible to Bayes' theorem would alsc reguireus to be inconsistent in the
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sense discussed earlier, or to violate qualitative common sense. Our robot
would say this: "When you have calculated the probability of propesition
A, conditional on 2ll the available evidence, then you have got everything
bearing on the truth of A that is to be had from the evidernce. Nc¢ method
of analyzing the data can give you more than this, and there is nothing
more to be gaid."

Does anyone incur any serious error by starting out at zero db? In
principle, this is bad in the sense that it is inconsistent if we do have
pricr information. But, of course, in practice the person using the test
still has his common sense; and if he has prior information he will use
that information in deciding where to put the boundaries of the accept and
reject reglons. We cannot remove all the arbitrariness in location of
these boundaries, but we can remove some of it, by taking into account
prior probability. In practice, the orthodox statistician would use his
common sense to take account of his prior information, without ever having
to admit that there is any such thing as a "prior probability."

A particularly frank admission of the relevance of prior information
is given by Lehman (13959; p. 62) in his well-known work on hypothesis testing
according to the "orthodox" viewpeocint. He writes: "Another consideration
that freguently enters into the specification of a significance level [this
is something essentially equivalent to chocsing the threshold values in
our problem] is the atiitude toward the hypothesis before the experiment
is performed. Tf one firmly believes the hypothesis to be true, extremely
convincing evidence will be required before one is willing to give up this
belief, and the significance level will accordingly be set vary low.”
Exactly so! But it is just the prior probability that shows gquantitatively

how this is to be done.
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Of course, there is a great deal more to sequential testing theory
than just applying the probability ratic test. There are many questions
about the procedure that the manufacturer and customer wouid ask, and would
want the statistician to answer. For example, if all batches have a certain
fraction £ defective, and we use a sequential test with specified threshold
levels, o, B what is the expected number of diodes tested per batch? How
does this average sample number depend on {f,a,f}? Or if a fracticn g of
the batches is in fact bad, what fraction do we expect to be rejected on the
average if certain threshold levelg are used?

Questions of this type can be answered by straightforward extensions
of this analysis and there is an extensive literature on them. In these
talks we are concerned only with showing that the rules for plausible reason-
ing which we have built into the robeot's brain will, if applied to this
problem, lead to the same actual procedures as the newest methods developed
by statisticians. Their conceptual basis 1s, however, entirely different.
To the orthodox statistician, the justification of thes seguential probability-
ratio test would probably lie in considerations of average sample numbers
for given probability of errors. To the robot, this is only an incidental
consequence of the fact that this procedure is the one that makes full use
of the available data, because it is derivable from Bayes' theorem.

We see that the robot's prediction has been borne out in one more
example. We are warned not to use Bayes' theorem for guality-control tests,
because 1L was associated with some metaphysical nonsense 150 years ago.

But so was everything else in science. It is even insinuated that Bayes'

theorem cannot be "applied." But the simple fact is that the most powerful
known method of guality control, only recently discovered by statisticians,
is nothing but an application of Bayes' theorem, in exactly the way Laplace

would have handled this problem.
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5.5. The Value of Wit-Picking.

So now we are in a position to discuss the value of my "nit-picking"
abcut the meaning of Eg. (5-12), and see why the problem of gquality contrel
provides a good example of the situation. Basically, of course, it is a pro-
blem of testing one hypothesis {we got a bad batch) against a single alterna-
tive (we got a good batch): and the mathematics we have developed applies just
as well to any such problem of hypothesis testing, such as testing two rival
theories in physics, or blology, or econcmics, against each other.

Now the procedures we are deveéloping in this and the next three lectures,
were used by Laplace in just such problems (although not in the logarithmic
form, which is only a convenient mathematical detail} from about 1774, and
they have been available to anvone wheo had the sense to use them since the

appearance of Laplace's Theorie Analytique in 1812. Yet generations of

statisticians were taught that these methods were wrong, and 1t was only

in the early 1940's--130 years later--that statisticians rediscovered the
procedure in this lecture from an entirely different view point without

at first recognizing it. It was then hailed as a major new advance in
statistical practice, and several more years elapsed before it was generally
realized (Good, 1950; Wald, 1950) that it was mathematically identical with
application of Bayes' theorem in exactly the manner that had long been re-
jected as wrong.

What caused this procedure to be lost to science for 130 years? Just

the point about which I was nit-picking earlier in this lecture; stubborn
adherence to a belief, for which there is no supporting evidence, that the
notion of prcbability can be used only in the sense of "frequency in a
random experiment". From this one concluded that it is meaningless to speak
of the probability that an hypothesis is true, because that is not a "random

variable." On such grounds statistical workers denied themselves use of
g
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the proper statistical methods, and worked instead with a great variety
cf ad hoc approximate methods.
In his later book, "Statistical Decision Functicns" (wWald, 1950},

Wald developed this theory very much further, and here we have one of those
ironical situations where years of the most careful and painstaking work
leads right back to the very thing one had been trying to refute. Wald
sought to develop a general thecry of decision making in the face of uncer-
tainty in a way which avoids the supposed mistakes of Laplace and Bayes,
who with Daniel Bernoulli had already developed such a theory in the 18'th

century. In order to keep the theory completely "objective," the notion
of inductive reasoning, which to Laplace was the central problem of the
theory, was suppressed, and attention was concentrated on the decision
itself. After long mathematical arguments to impose various conditions

of consistency, it finally developed that a class of "admissible" decision
rules, which consists, rcughly speaking, of all those any sane person
would ever consider adopting, is identical with the class derivable by the
methods of Bayes and Laplace, and the conly basis for a choice among them
lay in the prior probabilities! Wald called this class of rules, very
properly, "Bayes strategies.” As a final irony it was shown (Chernoff &
Moses, 1959; Chap. 6), that in practical applications it is only the fact
that these decision rules can be found by repeated application of Bayes'
theorem that makes it feasible to use this thecry at all in nontrivial pro-

blems, where the numnber of conceivable strategies is astronomical. We will

come back to these topics when we take up Decision Theory in Lectures 13, 14.
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