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Abstract. We try to correct some persistent misconceptions which are preventing progress in
current research. These include failure to take note of highly cogent facts and theorems, semantic
confusions over terminology, and clinging to folklore long after it is obsolete.

INTRODUCTION

In spite of the spectacular advances in experimental techniques all about us, we live in an age of
inexplicable decadence where theory is concerned. A wild variety of di�erent views about entropy
and reversibility, their place in fundamental physics, and the role of information for science in
general, is being expressed. But important facts that were well understood and clearly explained
by Maxwell and Gibbs over 100 years ago, and which played a crucial role in the work of Planck
and Einstein 80 years ago, have been lost and are no longer comprehended at all by some who try
to work in this area.

Max Planck (1949) complained about this over 40 years ago, and it is worse today, the ad-
vances in understanding of the past 40 years being equally ignored. As a result, the �eld seems
to have reached an evolutionary dead end, settled into a limit cycle in which the same things are
rediscovered, and the same old errors are repeated back and forth, endlessly. We are unable to
point to a single new useful result from this activity.

Yet in the past 40 years we have accumulated a collection of experimental facts and theorems
that, in our view, resolve the paradoxes about reversibility in a very simple and obvious way, and
settle the questions about the meaning of entropy and its relation to information, thus determine
the role it can play { and the roles it cannot play { for science in general.

This recently gained understanding has led to successful new applications, far beyond equi-
librium thermodynamics, in several di�erent �elds. Use of the Maximum Entropy principle {
essentially, the Gibbs canonical formalism for statistical mechanics { in many inverse problems
such as spectrum analysis, image reconstruction, and crystal structure determination, have been
described before (Jaynes, 1986).

When more speci�c prior information is available, an addition to maximum entropy { the
Bayesian analysis of Bretthorst (1988) { has led to a major advance in our ability to extract
information from NMR data, over the fourier transform methods previously used, and to safer
methods of detrending economic time series. Current methods of detrending introduce spurious
artifacts into the data, which can distort the �nal conclusions. Bayesian analysis does not seek to
remove the trend from the data, but rather to remove the e�ect of trend from the �nal conclusions,
leaving the data intact.

What we believe is the �rst quantitative application of the second law in a nonequilibrium
biological problem is reported in Jaynes (1989). There we calculate the maximum theoretical
e�ciency of muscles from the energy release �H = �9:9 kcal/mol of the chemical reaction (ATP
hydrolysis) which powers them, and the value T = 273+ 37 = 310K of body temperature (Jaynes,
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1989). The observed e�ciency was long thought to be \too high", in violation of the second law;
but now a more careful statement of the second law, which holds in nonequilibrium situations by
taking into account its connection with information, leads to a correct prediction of that e�ciency.

In other words, we ought to be beyond the stage of philosophical argumentation; where thirty
years ago we had only faith, we now have demonstrated facts and theorems. The di�culty is still
the one about which Max Planck complained; the seeming impossibility of getting workers in the
�eld to take note of what is already well known. As Planck put it, a commonly heard statement
about the meaning of thermodynamic reversibility is \ - - an error against which I have fought
untiringly all my life, but which seems impossible to eradicate." This error, discussed below, is still
rampant today throughout the literature; no other area of science seems to have this problem.

In the following, we con�ne ourselves to citing demonstrable facts without trying to promote
any particular philosophical viewpoint, because we think that those facts are cogent enough to
speak for themselves.

THE EXPERIMENTAL FACTS: CLAUSIUS

The general statement of the empirical second law, due to Clausius, is simply

Sinitial � Sfinal (1)

in which S stands for the total entropy of all bodies that take part in a process, and the entropy
for a single system is de�ned to within an additive constant for closed systems by

SB � SA =

Z B

A

dQ

T
(2)

but it requires some discussion to set forth its full meaning. We note �ve important facts:

(I) This statement is logically equivalent to Carnot's principle (no heat engine can be more e�cient
than a reversible one operating between the same temperatures). That is, it is deducible
directly from Carnot's principle, and it implies Carnot's principle. We have given the reasoning
showing this, reduced to its bare essentials (Jaynes, 1988). Therefore, although (1) is not
proved to be true as a consequence of the laws of physics, if a physical phenomenon is ever
found which violates (1), then we shall have the means to realize Carnot's perpetual motion
machines of the second kind after all.

(II) The integral in (2) is necessarily over a reversible path (i.e., a locus of equilibrium states)
connecting the macroscopic thermodynamic states A and B, because the temperature T in (2)
is not de�ned except in states of thermal equilibrium. Entropy is therefore de�ned in classical
thermodynamics only for states of thermal equilibrium.

(III) Because of (II), statements of the genre dS=dt � 0 are not justi�ed (i.e. not deducible from the
foundations) in classical thermodynamics. Of course, one can generalize the notion of entropy
to nonequilibrium, time-dependent conditions; but this can be done in many di�erent ways and
there is no criterion for saying that one is \right" and another \wrong." Rather, some ways
may be useful, others not useful. But the onus is on the one who generalizes to demonstrate
that useful properties actually do exist, which make a di�erence in applications.

(IV) According to (2) the entropy is to be found from experimental measurements with calorimeters
and thermometers, and so it is by construction a function S(V; T;N) of the macrostate of a
system. It makes no reference to any such notion as a microstate, much less to any probability.

(V) The entropy de�ned by (2) is not necessarily extensive; that is, from (2) one cannot deduce that
S(T; 2V; 2N) = 2S(T; V;N). For in (2) we are varying T and V , while holding N constant.
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Therefore (2) tells us only how entropy varies with T and V ; it says nothing about how it
depends on N . Indeed, there are systems, such as spin systems, in which the entropy is not
extensive because of long-range interactions; but for which the Clausius de�nition (2) is still
valid.

In summary, the second law (1) of Clausius, as a physical fact, is a proposition of observed macro-
scopic phenomenology, which makes a qualitative comparison of two states of thermal equilibrium.
The Clausius entropy is, by de�nition and construction, a property only of the macrostate; it makes
no reference to microstates, equations of motion, probability, or nonequilibrium states.

THE HUMAN INFERENCE: GIBBS

In noting the position of the pioneers we need to distinguish between early Planck and late
Planck, for he changed his mind in mid-career. Clausius and early Planck sought to establish the
second law (1) as an absolute law of physics, true of necessity in every case. Late Planck recognized
that this is impossible, and advanced to the viewpoint of Gibbs. As recounted by Kline (19**),
Boltzmann changed his mind many times.

There are two cogent reasons why one must abandon the view of Clausius and early Planck.
First is the recognition that the entropy to which (1) and (2) refer is not a \real physical property"
of a physical system; it has also an anthropomorphic quality because it is a property of the Ther-
modynamic system that you or I create by the measurements we choose to make on the system.
A given physical system (say, a quartz crystal) corresponds to many di�erent thermodynamic sys-
tems, depending on which macrovariables you or I choose to observe and/or control. They have
di�erent entropy functions, depending on di�erent macrovariables (Jaynes, 1965). It is therefore
meaningless to speak of the \entropy of the crystal" as if it were a physical property like its energy.

This is no more paradoxical than the fact the music produced by a piano is not an \objective
physical property" of the piano; it has also an anthromorphic quality, because a given piano may
produce an unlimited variety of music, depending on which keys you or I choose to press down.

To see the second cogent reason why the \absolute physical law" position must be abandoned,
we turn to the work of Gibbs. The above statement of the Second Law is still the one traditionally
taught to physicists, although it has severe limitations. It gives us one piece of information about
the general direction in which an irreversible process will go; but it does not tell us how fast it will
go, how far, or along what speci�c path. And it refers only to a closed system (no particles enter
or leave).

Gibbs showed how to remove two of those limitations. He generalized the de�nition of entropy
to open systems, as needed for many applications. More important for our purposes, he perceived
the correct logical status of (1), which enabled him to extend its application to quantitative pre-
diction, thus answering the question: \How far?".

Instead of Clausius' weak statement that the total entropy of all bodies involved \tends" to
increase, Gibbs made the strong prediction that it will increase, up to the maximum value permitted
by whatever constraints (conservation of energy, volume, mole numbers, etc.) are imposed by the
experimental arrangement and the known laws of physics. Furthermore, the systems for which this
is predicted can be more complicated than those envisaged by Clausius; they may consist of many
di�erent chemical components, free to distribute themselves over many phases.

Gibbs' variational principle resolved the ambiguity: \Given the initial macroscopic data de�n-
ing a nonequilibrium state, there are millions of conceivable �nal equilibrium macrostates to which
our system might go, all permitted by the conservation laws. Which shall we choose as the most
likely to be realized?"

Although he gave a de�nite answer to this question, Gibbs noted that his answer was not found
by deductive reasoning. Indeed, the problem had no deductive solution because it was ill-posed.
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There are initial microstates, allowed by the data and the laws of physics, for which the system
will not go to the macrostate of maximum entropy. There may be additional constraints, unknown
to us, which make it impossible for the system to get to that state; for example new \constants of
the motion". So on what grounds could he justify making that choice in preference to all others?

At this point thermodynamics takes on a fundamentally new character. We have to recognize
the distinction between two di�erent kinds of reasoning; deduction from the laws of physics, and
human inference from whatever information you or I happen to have. Instead of asking, \What do
the laws of physics require the system to do?", which cannot be answered without knowledge of
the exact microstate, Gibbs asked a more modest question, which can be answered: \What is the
best guess we can make, from the partial information that we have?"

But Gibbs was only recognizing something that is true universally. In all of science. in or out
of thermodynamics, what happens in the real world depends on physical law and is on the level of
ontology. What we can predict depends on our state of knowledge, and is necessarily on the level
of epistemology. He who confuses reality with his knowledge of reality generates not solutions, but
paradoxes. However, there is still very little perception of this in the scienti�c community, and
attempts to point it out can generate bitter controversy.

The conventional attitude is exhibited by those who would object to Gibbs' answer on the
grounds that there may be unknown constraints that prevent the system from getting to the state
of maximum entropy; and so Gibbs' answer might be wrong. But since the question was ill-
posed, the same kind of objection would apply whatever answer he gave; if such an objection were
sustained, Gibbs would be prohibited from giving any answer at all. Science does not advance on
that kind of timidity; let us note how much more realistic and constructive is the opposite attitude.
To one who raised that objection, Gibbs might reply as follows:

\Of course, my answer might be wrong. You seem to think that would be a calamity that
we must avoid; but you are like a chess player who thinks only one move ahead. If you will think
ahead two moves, you will see that, on the contrary, getting a wrong answer would be even more
valuable than getting a right one. As you note, at present we do not know whether there may exist
unknown constraints that would prevent the system from getting to the maximum entropy state.
But I choose to ignore that warning, go ahead with my calculation, and then ask an experimentalist
to compare my prediction with observation. What conclusions will we be able to draw from his
verdict?

\Suppose my prediction turns out to be right. That does not prove that no unknown constraints
exist; but it does prove that there are none which prevent the system from getting to the macrostate
of maximum entropy. So the calculation has served a useful predictive purpose, and its success gives
us more con�dence in future predictions.

\But suppose my prediction turns out to be wrong; the experiment repeatedly gives a di�erent
result. Then we have learned far more; we know that there is some new (i.e., previously unknown)
constraint a�ecting the macroscopic behavior, and the nature of the error gives us a clue as to
what that new constraint is. We would have a start toward learning a fundamental new physical
fact, perhaps a new law of physics. I do not see this as a calamity; how else can we advance to a
new state of knowledge about physical law, but by having the courage to go ahead with the best
inferences we can make from our present state of knowledge?"

The words we have just put into Gibbs' mouth are not fanciful. Gibbs' classical statistical
mechanics did make incorrect predictions of speci�c heats. Those were the �rst clues, indicating
the new constraints of discrete energy levels, pointing to the quantum theory. Nobody would have
realized that speci�c heats were relevant to the question, had Gibbs lacked the courage to make an
inference because he might be wrong.

After development of the Schr�odinger equation, the Gibbs formalism based on maximizing
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the new quantum expression for entropy has yielded so many thousands of quantitatively correct
equilibrium predictions that there seems to be almost no chance that it will ever fail in that problem.
Whenever it did seem to fail { as in the case of ortho and para hydrogen { it was seen quickly that
it was only performing its second function, revealing an unexpected constraint.

Today, we are only in the initial stages of extensions to predict the details of nonequilibrium
behavior; these put our entropy expressions to a more severe test. We can by no means rule out
the possibility that nonequilibrium statistical mechanics may lead to incorrect predictions, which
would then point the way to the next higher level of understanding of physical law, beyond our
present quantum theory. We may be seeing the incipient beginnings of this in the lore of \strange
attractors".

We think that this scenario will be repeated many times in the future, particularly as the
method moves into biology. Most maximum entropy inferences will be correct, serving a useful
predictive purpose. But some of the predictions will be wrong; those instances, far from being
calamities, will open the doors to new basic knowledge.

Another of the curiosities of this �eld is that, having done so much with entropy and demon-
strated such a deep understanding of the logic underlying the second law, giving thermodynamics
an entirely di�erent character, Gibbs said almost nothing about what entropy really means. He
showed, far more than anyone else, how much we can accomplish by maximizing entropy. Yet we
cannot learn from Gibbs: \What are we actually doing when we maximize entropy?" For this we
must turn to Boltzmann.

6. FOURTH METAMORPHOSIS: BOLTZMANN

Entropy �rst appeared, unanticipated and without warning, merely as a mathematical construct
in equation (12). Even after its fundamental nature and usefulness were recognized and exploited,
the question: \What is it?" continued to mystify and confuse. It appears that the answer was �rst
revealed to Ludwig Boltzmann, when he calculated the phase volume of an ideal gas of N atoms
in volume V , for which the energy lies in (E;E+ dE):

W =

Z
R

d3x1 � � �d
3xN d3p1 � � �d

3pN = C V N E3N=2�1 dE (15)

where the region R of integration is those points for which all coordinates are within a volume V ,
and the momenta satisfy

E < �p2=2m < E + dE: (16)

The constant C is independent of V and E.

Now from elementary thermodynamics it was known that the entropy of any system which
obeys the equation of state PV = RT with a heat capacity Cv = const:, has the form S(V; T) =
Cv log T + R logV + const:, where the const: is independent of T and V . But with the heat
capacity for Boltzmann's monoatomic gas, Cv = (3=2)R and the resulting internal energy function
E = (3=2)RT , it was evident that log W has the same volume and energy dependence as the
entropy of that gas, calculated from (12). That is, to within an additive constant independent of
T and V , it was true that

S = k logW: (17)

This is such a strikingly simple relation that one can hardly avoid jumping to the conclusion that it
must be true in general; i.e., the entropy of any macroscopic thermodynamic state A is a measure
of the phase volume WA occupied by all microstates compatible with A.

It is convenient verbally to say that S measures the \number of ways" in which the macrostate
A can be realized. This is justi�ed in quantum theory, where we learn that a classical phase
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volume W does correspond to a number of global quantum states n = W=h3N . So if we agree, as
a convention, that we shall measure classical phase volume in units of h3N , then this manner of
speaking will be appropriate in either classical or quantum theory.

We feel quickly that the conjectured generalization of (17) must be correct, because of the
light that this throws on our problem. Suddenly, the mysteries evaporate; the meaning of Carnot's
principle, the reason for the second law, and the justi�cation for Gibbs' variational principle, all
become obvious. Let us survey quickly the many things that we can learn from this remarkable
discovery.

Given a \choice" between going into two macrostates A and B, if SA < SB , a system will
appear to show an overwhelmingly strong preference for B, not because it prefers any particular
microstate in B, but only because there are so many more of them. As noted in Appendix C,
an entropy di�erence (SB � SA) corresponding to one microcalorie at room temperature indicates
a ratio WB=WA > exp(1015). Thus violations are so improbable that Carnot's principle, or
the equivalent Clausius statement (14), appear in the laboratory as absolutely rigid \stone wall"
constraints suggesting a law of physics rather than a matter of probability.

Let us see the light that this casts on Gibbs' method, by examining a simple application. We
have two systems of one degree of freedom (i.e., their energy and temperature can vary when in
contact with other systems). Then their entropy functions are

S1(E1) = k logW1(E1); S2(E2) = k logW2(E2); (18)

The systems start out in thermal equilibrium with arbitrary initial energies E1i; E2i. Then they
are placed in contact so they can exchange energy in such a way that the total amount is conserved:

E = E1 +E2 = const:; E1 > 0; E2 > 0: (19)

Required: to predict the �nal energies E1f ; E2f that they will reach when they come into equilib-
rium with each other.

This is manifestly an ill-posed problem; for the �nal energies must depend on the initial
microstates which are unknown; and all values compatible with (19) are possible without violating
any known laws of physics. We are thus obliged to use inference rather than deduction. Gibbs'
algorithm was: predict that energy distribution that maximizes the total entropy S1 + S2 subject
to the constraint (19). At �rst this seems arbitrary; but now if (17) is correct we can see why this
guess is \best". We are maximizing the product

M(E1) = W1(E1)W2(E �E1) (20)

with respect to E1; but that product is just the multiplicity, or number of ways in which the energy
distribution (E1; E2) can be realized. So in the light of (17) Gibbs' rule now says, merely: \Predict
that energy distribution that can happen in the greatest number of ways, subject to the information
you have". An eminently sensible criterion!

Experimentally, one says that equilibrium is reached when the systems have equal temperature.
Di�erentiating (20), we �nd that the maximum is reached when d logW1=dE1 = d logW2=dE2.
But the general thermodynamic relation T�1 = dS=dE that follows from (12) becomes, in the light
of (17)

1

kT
=
d logW

dE
: (21)

So the general interpretation of entropy by (17) not only predicts equal temperature as the condition
for equilibrium; it gives a simple explanation of why this is true.
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The above explains why Gibbs' method gives, in a sense, the best guess one could have made
in view of our great ignorance as to the microstate; but does not explain why it is so uniformly
successful. If the multiplicity (20) had a broad maximum, or many local maxima, one would
not expect Gibbs' rule to be very reliable in practice. This raises the question: How sharp is the
maximum in the multiplicity (20)? Note that di�erentiating (21) once more gives the heat capacity:

d2 logW

dE2
= �

1

kT 2Cv
: (22)

But, as (15) shows for an ideal gas and is true in general, Cv may be interpreted as Cv = nk=2, where
n is the e�ective number of degrees of freedom of the system (in quantum theory, the number excited
at the temperature T ), of the order of Avogadro's number for a macroscopic system. Therefore,
expanding logM(E1) about its peak at E0 we have

M(E1) =M(E0) exp

�
�
(E1 � E0)2

2�2

�
(23)

with the RMS deviation

� = kT

�
n1n2

(n1 + n2)

�1=2
: (24)

which is of the order of kTn1=2 = E0=n1=2 = 10�12E 0. Therefore, not only is E0 the value of E1

that can happen in the greatest number of ways for given total energy E; the vast majority of all
possible microstates with total energy E have E1 very close to E

0. Less than 1 in 108 of all possible
states have E1 outside the interval (E

0�6�), far too narrow to measure experimentally. From (17),
then, we understand also why Gibbs' method succeeds.

But there is still more to be learned from Boltzmann's discovery (17). Imagine n2 to become
very large; then we may expand using (21):

logW2(E �E1) = logW2(E)�
E1

kT
+ � � � (25)

and from (22) the next term is negligible. But then the fraction of the multiplicity (23) in the
interval (E1; E1 + dE1) becomes

f(E1)dE1 = Z�1W1(E1) exp(�E1=kT ) dE1 (26)

which is the distribution of Gibbs' \Canonical Ensemble", the basis of his later work on Statistical
Mechanics. The normalization constant

Z(�) =

Z
W1(E) exp

��E1 dE ; � = 1=kT (27)

is Gibbs' partition function, and if we re�ne the inference procedure by taking as our prediction
the mean value over the distribution (26) instead of the peak E0, our prediction reduces to

hE1i = �
d logZ

d�
; (28)

noindent the basic predictive rule of statistical mechanics.
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All these relations generalize e�ortlessly to systems with more macroscopic degrees of freedom
(volume, magnetization, angular momentum, mole numbers, etc.) corresponding to Gibbs' grand
canonical ensemble and its generalizations. So the interpretation (17) of entropy has given us the
key to essentially everything that has happened since in the �eld of equilibrium thermodynamics
and statistical mechanics. This was recognized, and exploited in their own fundamental research,
by both Planck and Einstein.

In our opinion, (17) represents by far the greatest of all of Boltzmann's achievements, just
because of its fundamental, timeless character. One hundred years from now, his transport equation
will be a nearly forgotten detail of the history of science; but a thousand years from now, the relation
S = k logW will still be the foundation stone of this subject. A more appropriate inscription for
his gravestone can hardly be imagined.

If we had more information we would seldom do better in prediction of reproducible phenomena,
because those are the same for virtually all microstates in an enormously large class C; and therefore
also in virtually any subset of C. Indeed, as Gibbs showed, in almost every case the knowledge
supposed above is already su�cient to predict equilibrium states correctly. Still greater knowledge
(such as, perhaps, that the real system stays in some complicated fractal subset of C) might be
very interesting and important for future purposes; but it would not have helped for the predictions
that Gibbs was making.

Knowledge of the \data" E alone would not enable us to choose among the di�erent values
of E1 allowed by (19); the additional information contained in the entropy functions, nevetheless
leads us to make one de�nite choice as far more likely than any other, on the information supposed.

WHAT DOES `REVERSIBILITY' MEAN?

Thermodynamics is notoriously a �eld which encourages confusion and illogic by a terminology
which may use a common technical term with several di�erent meanings, and fails to distinguish
between them. We have noted before (Jaynes, 1980) some of the many di�erent, mutually incon-
sistent meanings that have been attached to the word \entropy". An equally serious confusion
arises from the fact that the word \reversible" is used with di�erent meanings; and hardly anybody
writing today takes any note of this. The term was introduced by Carnot in his idea of a reversible
heat engine, but Carnot's meaning is only one of three used interchangeably today.

Let A and B stand for two di�erent macrostates, de�ned by specifying (i.e., controlling or
observing) a few macroscopic quantities like temperature, volume, pressure, magnetization, such
that the change A! B can be carried out, reproducibly, in the laboratory. What do we mean by
saying that it is reversible? In the literature, we �nd these quite di�erent meanings:

(1) Mechanical Reversibility. Reversing all molecular velocities in B, the equations of
motion carry the system back along exactly its previous path to A. In the end this would
restore each individual molecule to its original position. (But they would be moving in the
reverse direction, so one must reverse all velocities a second time to restore the original
microstate).

But this is manifestly not what Carnot had in mind. In his reversible engines he is considering
instead:

(2) Carnot Reversibility. The macroscopic physical process can be made to proceed
in the opposite direction B ! A, restoring the original macrostate.

This is an enormously weaker condition than mechanical reversibility. But it was noted by Clausius,
Gibbs, and Planck that thermodynamic reversibility is a still weaker condition:

8



(3) Thermodynamic Reversibility. Even if the backward process B ! A cannot be
made to take place reversibly (for example, because of supercooling at a phase transition),
if by any means such as B ! C ! D ! A the original macrostate can be recovered
without external change, then all entropies are unchanged and the process A ! B is
thermodynamically reversible.

From this we see that the common phrase \ { the paradox of how to reconcile the irreversibility of
the second law with the reversibility of the equations of motion { " does not de�ne any paradox at
all; it is a nonsense utterance, using the term \reversible" in the totally di�erent meanings (1) and
(3) in the same sentence. Yet this nonsense utterance is repeated endlessly in the current literature.

These observations are hardly new. The distinction between mechanical and thermodynamic
reversibility was stressed already by Gibbs (1875) in his discussion of gas di�usion. Confusion
of thermodynamic reversibility with Carnot reversibility is the error that Planck complained was
`impossible to eradicate.' Indeed, to this day it has not been possible to eradicate it.

Despite the e�orts of Gibbs and Planck, these distinctions have been lost today. We have
found no recognition of them in current thermodynamics textbooks, or in the current literature
of this �eld. Indeed, both Maxwell and Gibbs are still under attack, from authors who still have
not comprehended their messages. See, for example, Atkins (1986). Recent e�orts to \explain
irreversibility" by tampering with the equations of motion or the de�nition of entropy, address
themselves to a non-problem, for reasons that Gibbs explained cogently over 100 years ago.

Indeed, our belief in mechanical reversibility is not based on experimental fact at all; only on
the mathematical fact that our Lagrangian functions are even functions of the velocities, so that if
the reversed motion were to take place, the equations of motion would be satis�ed. But nobody has
ever seen a motion and its exact reversed version; anyone who imagines that mechanical reversibility
is an experimentally veri�able fact, has never tried to drive backwards along a winding road with
a trailer.

Of course, approximate reversal of a few degrees of freedom is possible, whose e�ects persist
for a short time; for example in spin echoes and percolation of water and oil through shale. These
cases are valuable because they stand as counter-examples to glib, unquali�ed statements of the
second law in the form dS=dT � 0, and force us to recognize that the Clausius second law refers
only to processes that begin and end in states of thermal equilibrium.

It should not require a lengthy demonstration to persuade us that one cannot reverse all
molecular velocities { to in�nite accuracy { with the technology (pistons, stoves, magnets, etc.)
available to experimenters. By experimental means of macroscopic coarseness one can generate a
class of initial states from which a macroscopic process A ! B takes place reproducibly; but in
general the reversed process B ! A cannot be achieved reproducibly by macroscopic means. That
the microscopic equations of motion may nevertheless be \reversible" in the mechanical sense, is
quite irrelevant to what the experimenter can actually do.

Yet we can understand at once why irreversibility is observed in real laboratory experiments,
if we recognize the interpretation of entropy S = k log W expounded by Boltzmann, Planck, and
Einstein. Let WA be the phase volume occupied by all microstates compatible with the macrostate
A. If in setting up the state A the experimenter's apparatus is able to put the system only in some
uncontrolled point in WA, then because of Liouville's theorem (conservation of phase volume) the
process A! B cannot be reproducible unless the phase volume WB is large enough to hold all the
microstates that could evolve out of WA.

In other words, reproducibility of the process A ! B requires that WB � WA, or SB �
SA. If the inequality holds, then the reverse process is, as Gibbs noted, not impossible, but only
improbable; i.e., not reproducible. The probability of success is something like
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p =
WA

WB
= exp

�
�
SB � SA

k

�

If the entropy di�erence corresponds to about the smallest amount that could be measured in the
laboratory, say one microcalorie at room temperature, p < exp(�1015). We do not see why any
more than this is needed to understand and explain the observed phenomenological facts about
irreversibility associated with the second law; yet contemporary writers still try to make a major
mystery out of it.

But this simple understanding enables us to generalize the second law far beyond the equilib-
rium conditions envisaged in (1). As soon as we recognize that the fundamental keyword charac-
terizing the second law is not `disorder' but `reproducibility', it is clear that S = k logW applies
equally well to determining which nonequilibrium states can be reached, reproducibility, from which
others and without any restriction to slow, reversible processes.

This is the principle underlying the above mentioned calculation of muscle e�ciency. Quite
generally, biological processes take place so rapidly that nothing like thermal equilibrium is ever
achieved, so conventional `free energy' thermodynamics does not apply. Attempts to apply the
second law in biology could not have succeeded until this was recognized.
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