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Summary : The problem of translating prior informa-
tion uniquely into a prior probability assign-
ment has heretofore seemed insoluble due to
lack of invariance under parameter changes. We
show that this ambiguity can be removed by
finding the group of operations which transform:
the problem into an equivalent one, and applying
a basic desideratum cf consistency. The method
is illustrated for the case of location and
scale parameters, leading to a procedure for
determining prior distributions which is com-
pletely "objective" in the sense that it is in-
dependent of the parameterization and allows no

arbitrary checice on the part ¢f the user.
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1. INTRODUCTION

Since the time of Laplace, applications of prob-
ability theory have been hampered by difficulties in the
£reatment of prior information. In realistic problems of
inference, we often have prior information which is highly
reievant to the question being asked; to fail to take it
into account is to commit the most obvious inconsistency of
reasoning, and may lead to absurd or dangerously misleading
results, As an extreme example, we might know in advance
that a certain parameter 8 < 6. If we fail to incorporate
that fact into our equations, then a conventional statistical
analysis might easily lead to the conclusion that the "best"
estimate of § is 9% = 8, and a shortest S0 percent confidence
interval is (7 < 8 < 9). Yet we do not seem to have the
principles needed to translate prior information into a def-
inite prior probability assignment.

The "orthodox" school of thought, represented by
most statisticians, seeks to avoid the problem by rejecting
the use of prior probabilities altogether, except in the case
where the prior information consists of frequency data. How-
ever, as the above example shows, this places a great res-
triction on the class of problems which can be fully treated.
Usually, the prior information does not consist of frequency
data; but it is nomtheless cogent. As Kendall and Stuart [1]

pdint out, this is a major weakness of the principle of con-

fidence intervals.



The "peréonalistic“ school of thought [2] , [3]
recognizes this deficiency, but proceeds to overcompensate
it by offering us too many priors. Surely, the most elemen-
tary requirement of consistency demands that two persons
with the same relevant prior information should assign the
same prior probabilities. One stands aghast at the fact
that personalistic doctrine makes no attempt to meet this
desideratum, but instead attacks it as representing a naive
"necessary" view of probability; and proclaims as one of its
fundamental tenets (Ref. [2] , p. 3) that we are free to

violate it without being unreasonable!

2. THE BASIC DESIDERATUM

Let us belabor the point just made. A prior prob-
ability assignment not based on frequencies is necessarily
"subjective” in the sense that it describes a state of know-
ledge, rather than anything which could be measured directly
in an experiment. But if our methods are to have any rele-
vance to science, the prior distribution must be completely
"objective" in the sense that it is independent of the per-
sonality of the user; i.e., it should describe the prior

information, and not anybody's personal feelings. To intro-

duce prior probabilities which everyone is free to choose
arbitrarily according to his own fancy, is hardly an advance
over orthodox practice.

Evidently, we need to find a middle ground between



the orthodox and personalistic approaches, which will give us
just one prior distribution for a given state of prior knowledge.
Historically, orthodox rejection of Bayesian methods was not
based at first on any ideoclogical dogma about the "meaning of
\

probability," and certainly not on any failure to recognize the
importance of prior information; this has been noted by Kendall
and Stuart [1], Lehmann [4 ], and many other orthodox writers.
The really fundamental objection (stressed particularly in the
remarks of E. S. Pearson in Ref, [3]) was the lack of any
principle by which the prior probabilities could be made "objective"
in the aforementioned sense. We Bayesians must concede that this
is a very sound objection and that Bayesian methods, for all
their advantages, will not be entirely satisfactory until we
face the problem squarely and show how this requirement may
be met,

For later purposes it will be convenient to state this

basic desideratum as follows: in two problems where we have

the same prior information, we should assign the same prior

probabilities. This is stated in such a way that it seems

psychologically impeossible to quarrel with it; indeed, it
may appear so trivial as to be without useful content. The
main purpose of the present paper is to show that, in spite
of first appearances, this desideratum may be formulated mathe-
matically in a way which has nontrivial conseguences.

We are not entirely without clues as to how this

unigueness problem might be solved, at least in some cases.



The principle of maximum entropy (i.e., the prior pfobability
assignment should be the one with the maximum entropy consis-
tent with our prior information) gives us a definite rule for
setting up priors, which is impersonal and has an evident
intuitive appeal [5], [6], [7], which indicates that it does
accomplish the purpose of assigning a prior. 1In practice, we
find that it is easy to apply, and leads to useful results
(8], {91 that could be cbtained otherwise only by the most
awkward and artificial devices.

The application of this principle to the case of con-
tinuous parameters is, however, ambiguous because the results
depend on our choice of parameters. More generally, all priocr
probability assignments to continuous parameters, whether based
on maximum entropy or not, suffer from this same ambiguity.

We have not, heretofore, had any "objective" criteridn telling
us which parameterization to use.

Since this same difficulty confronts us already in
the problem of expressing "complete ignorance,” we may hope
to make progress by considering this simpler, but still unsolved,
problem. Bayes suggested, in one particular case, that we
assign a uniform prior probability density; and the domain of
useful application of this rule is certainly not zero, for
Laplace was led to some of the most important discovefies

in celestial mechanics by using it in analysis of astronomical



data. However, Bayes' rule has the obvious difficulty that
it is not invariant under a change of parameters.

Jeffreys [10] , [ 11] suggested that we assign a
prior do/c to a continuocus parameter ¢ known to be positive,
on the grounds that we are then saying the same thing whether
we use the parameter o or ™. Such a desideratum is surely
a stép in the right direction; however, it cannot be extended
to more general parameter changes. We dc not want {and ob-
viously cannot have) invariance of the form of the prior under
all parameter changes. What we want is invariance of content;
but the rules of probability theory already determine how the .
prior must transform, undexr any parameter changes, so as to
achieve this.

The real problem, therefore, must be stated rather
differently; we suggest that the proper question to ask is:

For which choice of parameters does a given form of prior dis-

tribution such as that of Bayes or Jeffreys; or a given prin-

ciple such as maximum entropy, apply? Our parameter spaces

seem to have a mollusk-like quality which prevents us from
answering this, unless we can find some new principle which
gives them a property of "rigidity".

Stated in this way, we recognize that problems of
just this type have already appeared, and have been solved,
in other branches of mathematics. In Riemannian geometry and
General Relativity theory, we allow arbitrary continuous co-

ordinate transformations; yet the property of "rigidity" is



maintained by the concept of the invariant line element, which
enables us to make statements of definite geometrical and
physical meaning, independently of our choice of coordinates.
In the theory of continuous groups, the group parameter space
had just this mollusk-like quality until the introduction of
the concept of invariant group measure, by Hurwitz [12]) and
Haar [13] , [14] . We seek to do something very similar to
this for the parameter spaces of statistics.

In the following section we give a very elementary
argument which shows that the concept of "complete ignorance™
may be defined precisely by specifying the transformaticn
group ¢f the problem. The above basic desideratum of consis-
tency may then be stated mathematically in the form of func-
tional equations which must be satisfied by the prior distri-
butions and which, at least in some cases, uniquely determine

the form of the prior.

3. TRANSFORMATION GROUPS
We sample from a continoous two-parameter distribu-
tion

p{dx|u,s) = $(x,u,o) dx (1)

and consider:

Probhlem A: Given a sample {xl...xn} , estimate u

and o,



The problem is indeterminate, both mathematically and concep-

tually, until we introduce a definite prior distribution

f(u,o0) dudo, (2)
but if we merely specify "complete initial ignérance“, this
does not tell us which function £(u,c) to use.

Suppose we carry out a change of variables to the

new quantities {x',u',s'} according to

w'= ptb
g'= ag (3)

®'rut=a(x-u}

where 0 < a < », = « < b < «, The distribution (1) expressed

in the new variables is
pldx"|u',o') = ¥(x',u',¢") dx' = ¢(x,u, o) dx

or from (3},

1

bixt, wt, ') = a teix, u, o) (4)

Likewise, the prior distribution is changed into a new one
g{uf,c‘), where from the jacobian of the transformation (3),
' t — -1
glu', o'y = a "£w,0}. (5)

above .
The/relations will hold whatever the distributions ¢({x,n,0),

f{u,o).
Now suppose the distribution (1} is invariant under
the group of transformations (3), so that y and ¢ are the

game function:



yi(x,n,0) = ¢$(xX,u,0) (6)
whatever the values of a, b, The condition for this invari-
ance is that ¢(x,u,¢) must satisfy the functional equation

¢ {x,u,0)=aé(ax~au+p+b,u+b,ac) (7)

Differentiating with respect to a, b and solving the result-
ing differential equation, we find that the general solution

of (7) 1is

o (X, u,0) = = h(x_”) (8)
J

J

where h{q) is an arbitrary function. Thus the usual definition
of a location parameter pu and a scale parameter ¢ is equivalent
to specifying that the distribution shall be invariant under
the group of transformaticns (3).

What do we mean by the statement that we are "com-
pletely ignorant" of u and ¢ except for the knowledge that u
is & location parameter and ¢ 1s a scale parameter? To answer
this, we might reason as follows. If a change of scale can
make the problem appear in any way different to us, then we
were not completely ignorant; we must have had some kind of
information about the absolute scale of the problem. Likewise,
if a shift of location can make the proklem appear in any way
different, then we must have had some prior information about
location. 1In other words, "complete ignorance" of a location
and scale parameter is a state of knowledge such that a

change of scale and shift of location does not change that




state of knowledge. We shall presently have to state this more

carefully, but first let us see its consequences. Consider,

therefore,

Problem B: Given a sample'{xl'...xn'} , estimate
u' and ¢!

If we are "completely ignorant” in the above sense, then we must
consider A and B as entirely equivalent problems; they have iden-
tical sampling distributions, and our state of prior knowledge
about p' and ¢ in problem B is exactly the same as for yand o

in problem A,

Our basic desideratum now acquires a nontrivial con-
tent; for wé have formulated two problems in which we have the
same prior information. Consistency demands, therefére, that we
assign the same prior probability distribution in them. Thus, f

and g must be the same function:

f{u,a0) = glu,o0) (10)

whatever the values of (a,b}. But the form of the pricr distri-
bution is now uniquely determined; for combining Equations (3),
(5), and (10}, we see that f(u,o ) must satisfy the functicnal

equation
f(u,0) = a £(p + b, ao} (11)
whose general solution is

(éonst.} (12)

flu,0) = p



which is the Jeffreys rulel

We must not Jump toe the conclusion that the prior
(12) has been determined by the form (8) of the population.
Indeed, it would be very disconcerting if the form of the prior
were determined merely by the form of the population from
which we are sampling; any principle which led to such a re-
sult would be suspect. Examination of the above reasoning
shows, however, that the result (12} was uniquely determined by

the transformation group (3}; and not by the form of the distri-

bution (8).

To illustrate this, note that there is more than one
transformation group under which (8) is invariant. In the
transformations (3) we carry out a change of scale by a factor
"a" and a translation b. Denoting this operation by the symbol
(a,b), we can carry out the transformaticn (al'bl)’ then

(az,bz); and from (3) cbtain the composition law of group elements:
{azrbz) {alrbl) = (azal’b2+bl) (13)
Thus the group (3) is Abelian, the direct product of two one-

parameter groups. It has a faithful representation in terms

of the matrices

( a o {14)
b
o e

Now consider the group of transformations in which

we first carry out a change of scale "a" on all guantities;

- 10 -



and foilow this by a translation b. This group is given by

' = ap+b
o' = ag (3")
X' = ax+b

These transformations have the composition law
- )
(az,bz}(al,bl) (azal,a2b1+b2) {13°')

and so the group (3') is non-abelian; it has a faithful repre-

sentation in terms of the matrices

a b -
( (14"')
o 1

which cannot be reduced to diagonal form. Therefore, (3) and
(3'") are entirely different groups.
If we specify the transformation group (3'}) instead

of {3), equations (5) and (7) are modified to

2 (57)
glu',o') = a “"f(u,o)

p(x,u,0) = as¢{ax+b,au+b,as) (7))
But we find that the general solution of (77} is also (8); and
so both groups define location and scale parameters equally
well. However, their consequences for the prior are different;

for the functional equation (11) is modified to

£(u,0) = a’f (autb,ao) (117)

- 11 -



whose general solution is

Flu,o) = iEE%EELl (127)

g

Thus, the state of knowledge which is invariant under the group
(3) is not the same as that which is invariant under (3');

and we see a new subtlety in the concept of "complete ignor-
ance". In order to define it unambiguously, it is not enough
to say merely, "A change of scale and shift of location does
not change that state of knowledge". We must specify the pre-

cise manner in which these operations are to be carried out;

i.e. we must specify a definite group of transformations.

We thus face the guestion: which group, (3), or
(3'), or perhaps some other, defines the state of prior know-
ledge which we have, in realistic problems, about location and
scale parameters? In spite of several attempts, I have not
been able to invent any problem .in which I feel that (3') really
describes the prior information. The difficulty with (37) lies
in the equations x' = ax + b, v’ = au + b; thus the change of
scale Qperation is to be carried cut about tweo points denoted
by x = o,u = o, But,if we are "completely ignorant" about lo-
cation, then the condition x = o has no particular meaning;
what determines this fixed point about which the change of
scale 1s te be carried out?

In every problem which I have been able to imagine,
it is the group (3); and therefore the Jeffreys prior prob-

ability rule, which seems apprOpriate. Here the change of

- 12 -



scale involves only the difference (x - yu); thus it is carried
out about a point which is itself arbitrary; and so no "fixed
point"'is defined by the group (3). However, it will be in-
teresting to see whether others can prcduce examples in which
the point x = 0 always has a special meaning, justifying the
stronger prior (12).

To summarize: if we merely specify "complete initial

ignorance," we cannot hope to obtain any definite prio; dis-
tribution, because such a statement is toco vague to define any
mathematically well-posed problem. We are defining this state
of knowledge far more precisely if we can specify a set of
operations which we recognize as transforming the problem into
an eguivalent one. Having found such a set of operations, the
basic desideratum of consistency then places nontrivial res-
trictions on the form of the prior.

Further analysis shows that, if the number of inde-
pendent parameters in the transformation group is equal to
the number of parameters in the statistical problem, the "fun-
damental domain” of the group [12] reduces to a point, and
the form ¢f the prior is uniquely determined; thus specifica-
tion of such a tranformation group is an exhaustive description
of a state of knowledge.

If the number of parameters in the transformation

group 1is less than the number of statistical parameters, the

fundamental domain is of higher dimensionality, and the prior



will be only partially determined; for example, if in the
group (3'we had specified only the change of scale operation,
and not the shift of location, repetition of the argument

would lead to the prior
flu,0) = 0 7 k{u)

where k(u) is an arbitrary function.

It is also readily verified that the transformation
group analysis is consistent with the desideratum of invariance
under parameter changes mentioned above; i.e. that while the

form of the prior distribution cannot be invariant under all

parameter changes, its content should be. If the transforma-
tion group (3) or (3') had been defined in terms of some other
cholce of parameters (o,B), the form of the transformation
equationg gnd functional equations would, of course, be differ-
ent; but the prior to which they would lead in the (o,B)=-space
would be just the one that we obtain by solving the problem in
the (p,0)-space and transforming the result to the parameters

(a,B) by the usual jacobian rule.

4, DISCUSSION
The above analysis enables us to see the Jeffreys
pricr probability rule in a new light. It has, perhaps, always
been obvious that the real justification of Jeffreys' rule
canncot lie merely in the fact that the parameter is positive.
As a simple example, suppose that u is known to be a location

parameter; then both intuition and the above analysis agree

- 14 -



that a uniform prior density is the proper way to express
"complete ignorance" of u. The relation p = 8- 6"! defines

a l:1 mapping of the region (- « < u<w) onto the region

(0 < 8 < »); but the Jeffreys rule does not apply to the
parameter 8, consistency demanding that its prior density be
taken proportional to du = (1 + 8_2) dé. It appears that the

fundamental justificaticn of the Jeffreys rule is, not merely

that a parameter is positive, but that it is a scale parameter.

This also suggests a simple interpretation of some
relations between Bayesian and orthodox procedures. Many of
us have been surprised to discover how many orthodox proced-
ures involving location and sc¢ale parameters lead to results
mathematically identical with the Bayesian ones based on the
Jeffreys prior. Ffor example, the shortest confidence inter-
vals for the mean or variance of a normal distribution, and
the width of a rectangular distribution, are identical with
the shortest Bayesian posterior probability intervals at the
same level. Likewise, the orthodox F-test and t-test against
one-sided alternatives turn out to be identical with the
corresponding Bayesian tests, in the following sense: the crit-
ical confidence level, at which the null hypothesis is Jjust
rejected, is equal to the Bayesian posterior probkability that
the alternative is true. Thus, in spite of their diametri-
Call? opposed philoscophies, the two procedures lead us to

exactly the same final conclusions. It is curious that so

- 15 -



many textbook authors, after warning the reader against use of
the thoroughly discredited Bayesian methods, proceed to choose
just these problems to demonstrate the superiority of orthodox
methods!

From "empirical"” evidence of this sort, it appears to
be the rule rather than the exception that, if the orthodox
procedure is based on a sufficient statistic, it is mathemati-
cally equivalent to the Bayesian procedure based on the Jeffreys

prior. In other words, refusal to use prior probabilities at

all amounts, mathematically, to the same thing as assigning

prior probabkilities describing "complete ignorance". Undoubtedly,

exceptions to this statement can be found, since the orthodox
and Bayesilan criteria of performance are so different; neverthe-
less, this interpretation does seem to make good intuitive sense.
The fact that the prior distributions found above
cannot be normalized may be interpreted in two different ways.
One can say that it arises simply from the fact that our for-
mulation of the problem of "complete ignorance"” was an ideali-
zation -- a useful idealization, but one which does not strictly
apply in any real problem. A shift of location from a point
in St. Louis to a point in the Andromeda nebula; or a change
of scale from the size of an atom tc the size of our galaxy,
does not transform any problem of earthly concern into a com-

pletely eguivalent cne. In practice we will always have some



kind of prior knowledge about leccation and scale: and in
consequence the group parameters (a,b) cannot vary over a
truly infinite range. Therefore the transformations (3)

do not, strictly speaking, form a group. However, over the
range which does express our prior ignorance, the above
arguments still apply. Within this range the functional
equations, and the resulting form of the prior, must still
hold.

In most problems, as is well known, use of non-
normalizable priors causes no difficulty; for if the random
experiment is providing us with any useful infermation at
all, the likelihood function is such that the posterior dis-
tribution vanishes strongly at both ends. In fact, normali-
zation of pricrs is always unnecessary, because in the appli-
cation of Bayes® theorem the prior appears both in numerator
and denominator, and any normalization constant cancels out.

However, thers is a more constructive way of look-
ing at this. Finding the distribution representing "cémplete

ignorance™ mav be regarded as onl the first step in findin
g Y ,reg Y P g

the prior for any realistic problem. The "pre-prior" dis-
tribution representing complete ignorance does not strictly
represent any realistic state of knowledge; but it does de-
fine the basic "invariant measure" for our parameter space,
without which the problem of finding a realistic prior is
mathematically indeterminate., In other words, we cannot

answer the question, "What prior distribution represents this



specific prior information?" unless we first learn how to
answer, "What prior distribution represents complete ignor-
ance?" Having answered this, the "invariant measure" is
known, and application of the principle of maximum entropy
to incorporateISpecific prior information then becomes inde-
pendent of our choice of parameters. Demonstration of the
consistency of this interpretation, and examples of use of
the resulting procedure in practical statistical problems,

will be deferred to a later article.

5. CONCLUSION

It might be objected that we have not, by these
considerations, sclved the problem of "complete ignorance”.
We have merely shifted the problem back to that of choosing
gsome transformation group, and we still lack a completely
"impersonal" principle that tells us which one tc choose.
Indeed, thig analysis gives us no reascon to think that spec-
ifying a transformation group is the only way in which
“cohplete ignorance" may be precisely defined. Further-
more, the procedure suggested here is not necessarily appli-
cable in all problems: and s¢ it remains an open question
whether other approaches may be as good or better.

However, before we would Be in a position to make
any comparative judgments, it would be necessary that some
definite alternative procedure be suggested, and that there

exist specific problems in which both methods are applicable.



Since such comparisons are not available at present, one can
only point out some properties of the method here suggested.
The class of problems in which it can be applied is that in
which (1) the statement of the problem suggests some definite
traﬁsformation group, which establishes the invariant measure,
representing "complete ignorance”, in our parameter space,

and (2) in order to apply the principle of maximum entropy,
the specific prior information must be of such a nature that,
given any proposed prior probability assignment, we can deter-
mine unambigucusly whether it does or does not agree with that
information.

.It is difficult to see how any procedure could incor-
porate prior information which does not satisfy condition (2).
We note that satiéfying these conditions is, to a large extent,
simply a matter ¢f formulating the problem more completely
than is usually done.

If these conditions are met, then we have the means
for incorporating prior information into the problem, which
is -independent of our choice of parameters and is completely
"imperscnal," allowing no arbitrary choice on the part of the
user. Few orthodox procedures, and to the best of my know-
ledge no other Bayesian procedures, enjoy this complete
"objectivity."” Thus, while the above criticisms are undoubtedly
valid, I think it will be granted that this analysis does

congtitute an advance in the precision with which we are able
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to formulate statistical problems, as well as an extension

of the class of problems in which statistical methods are
useful. The fact that this has proved possible gives hope
that further work along these lines -~ directed in particuiar
toward learning how to formulate statistical problems so

that condition (1) 1s satisfied -- may yet lead to the final
solution of this ancient but vital puzzle; and thus achieve

full "objectivity"” for Bayesian methods.
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